Gear Remaining Useful Life Prediction Based on Grey Neural Network
نویسندگان
چکیده
The condition monitoring data of gears is asymmetric distributed, moreover, sampling is usually conducted discontinuously in practice. Thus makes it difficult to predict gear remaining useful life accurately considering the two reasons above. In this paper, a fusion method is proposed using Elman Neural Network to modify residual series of grey model since Elman Neural Network performs better on feeding back and accuracy than BP network. The proposed method takes the advantages of both GM (1, 1) for data mining and Elman neural network for feedback. Experimental data is used to validate the proposed method. The results illustrate that the integrated method has a high prediction capability compared with GM model. In addition the proposed method is a promising approach for life prediction in the case of small sample, incomplete and discontinuous sampling data.
منابع مشابه
An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple con...
متن کاملNanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملAn Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries
Prognostics is an emerging science of predicting the health condition of a system (or its components) based upon current and previous system states. A reliable predictor is very useful to a wide array of industries to predict the future states of the system such that the maintenance service could be scheduled in advance when needed. In this paper, an adaptive recurrent neural network (ARNN) is ...
متن کاملA Neural Network Approach for Remaining Useful Life Prediction Utilizing Both Failure and Suspension Histories
Artificial neural network (ANN) methods have shown great promise in achieving more accurate equipment remaining useful life prediction. However, most reported ANN methods only utilize condition monitoring data from failure histories, and ignore data obtained from suspension histories in which equipments are taken out of service before they fail. Suspension history condition monitoring data cont...
متن کامل